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Abstract

A multi-agent connectionist model is proposed that consists of a collection of
individual recurrent networks that communicate with each other, and as such is a network
of networks. The individual recurrent networks simulate the process of information uptake,
integration and memorization within individual agents, while the communication of beliefs
and opinions between agents is propagated along connections between the individual
networks. A crucial aspect in belief updating based on information from other agents is the
trust in the information provided. In the model, trust is determined by the consistency with
the receiving agents’ existing beliefs, and results in changes of the connections between
individual networks, called trust weights. Thus activation spreading and weight change
between individual networks is analogous to standard connectionist processes, although
trust weights take a specific function. Specifically, they lead to a selective propagation and
thus filtering out of less reliable information, and they implement Grice’s (1975) maxims
of quality and quantity in communication. The unique contribution of communicative
mechanisms beyond intra-personal processing of individual networks was explored in
simulations of key phenomena involving persuasive communication and polarization,
lexical acquisition, spreading of stereotypes and rumors, and a lack of sharing unique
information in group decisions.
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Cognition is not limited to the mind of an individual agent, but involves
interactions with other minds. A full understanding of human thinking thus requires insight
into its social development. Sociologists and developmental psychologists have long noted
that most of our knowledge of reality is the result of communication and social
construction rather than of individual observation. Moreover, important real-world
problems are often solved by a group of communicating individuals who pool their
individual expertise while forming a collective decision that is supposedly better than what
they might have achieved individually. This phenomenon may be labeled collective
intelligence (Levy, 1997; Heylighen, 1999) or distributed cognition (Hutchins, 1995). To
understand such group-level information processing, we must consider the distributed
organization constituted by different individuals with different forms of knowledge and
experience together with the social network that connects them and that determines which
information is exchanged with whom. In addition to qualitative observations and
conceptualizations, the phenomenon of distributed cognition has been studied in a
quantitative, operational manner, although from two very different traditions: social
psychology and multi-agent simulations.

Social psychologists have typically studied group level cognition using laboratory
experiments, and their research has documented various fundamental shortcomings of
collective intelligence. We often fall prey to biases and simplistic stereotypes about
groups, and many of these distortions are emergent properties of the cognitive dynamics in
interacting minds. Examples are conformity and polarization which move a group as a
whole towards more extreme opinions (Ebbesen & Bowers, 1974; Mackie & Cooper,
1984; Isenberg, 1986), communication within groups which reinforce stereotypes (e.g.,
Lyons & Kashima, 2003), and the lack of sharing of unique information so that intellectual
resources of a group are underused (Larson et al., 1996, 1998; Stasser, 1999; Wittenbaum
& Bowman, 2004). Although this research provides empirical evidence about real people
to convincingly test particular hypotheses, it is often limited to small groups with minimal
structures performing tightly controlled tasks of limited duration.

In contrast, the approach of multi-agent systems originates in distributed artificial
intelligence (Weiss, 1999) and the modeling of complex, adaptive systems, such as animal
swarms (Bonabeau, Dorigo & Theraulaz, 1999) and human societies (Epstein & Axtell,
1996; Nowak, Szamrej & Latané, 1990). In these systems, agents interact in order to reach
their individual or group objectives, which may be conflicting. However, the combination
of their local, individual actions produces emergent behavior at the collective level. In
contrast to experimental psychology, this approach has been used to investigate complex
situations, such as the emergence of cooperation and culture, and the self-organization of
the different norms and institutions that govern the interactions between individuals in an
economy. It manages to tackle such complex problems by means of computer simulations
in which an unlimited number of software agents interact according to whatever simple or
complex protocols the researcher has programmed them to obey. Although the complexity
of situations that can be studied is much greater than in an experimental paradigm, there is
no guarantee that the results produced by the simulation say anything meaningful about
real human interaction.
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Moreover, many of the earlier simulations to represent agent interaction are too
rigid and simplistic to be psychologically plausible. The behavior of a typical software
agent is strictly rule-based: If a particular condition appears in the agent's environment, the
agent will respond with a particular, preprogrammed action. More sophisticated cognitive
architectures may allow agents to learn, that is, adapt their responses to previous
experience, but the learning will typically remain within a symbolic, rule-based level.
Perhaps the most crucial limitation of many models is that the individual agents lack their
own psychological interpretation and representation of the environment. As Sun (2001, p.
6.) deplored, multi-agent systems need “...better understanding and better models of
individual cognition”.

Another shortcoming of many multi-agent models is their rigid representation of
relations between agents. In the most common models, cellular automata, each agent
(“automaton”) occupies a cell within a geometrical array of cells, typically in the form of a
checkerboard. Agents will then interact with all the agents in their geometric
neighborhood. This is clearly a very unrealistic representation of the social world, in which
individuals interact differentially with other individuals depending on their previous
experiences with those others. Other types of simulations, such as social network models,
are more realistic with respect to human relationships, but still tend to be rigid in the sense
that the agents cannot change the strength of their relationship with a particular other agent
(for a full discussion, see section on Alternative Models).

The present paper presents a first step towards overcoming these various
limitations, by proposing an integration of social psychology and multi-agent approaches.
For this, we will present a generic multi-agent simulation environment that is as much as
possible psychologically plausible, while at the same time remaining as simple as possible.
First, each individual agent is represented by a recurrent connectionist network (to be
described shortly) that is capable of representing internal beliefs as well as external
information. Such a network can learn new associations between its different concepts
through experience. This type of model has been used successfully in the past to model
several phenomena in social cognition, including person impression formation (Smith &
DeCoster, 1998; Van Overwalle & Labiouse, 2004), group impression formation
(Kashima, Woolcock & Kashima, 2000; Queller & Smith, 2002; Van Rooy, Van
Overwalle, Vanhoomissen, Labiouse & French, 2003), attitude formation (Van Overwalle
& Siebler, 2005), causal attribution (Van Overwalle, 1998; Read & Montoya, 1999), and
many other social judgments (for a review, see Read & Miller, 1998).

Second, and this is the real innovation proposed in this paper, we extend this
connectionist model of individual cognition to the social relations between agents. Inspired
by previous models developed by Hutchins (1991) and Hutchins and Hazlehurst (1995),
our model consists of a collection of individuals networks, that each represent a single
individual, and that can communicate with each other. This is depicted in Figure 1 for three
agents. In our model, unlike earlier multi-agent models, any agent can in principle interact
with any other agent, but the strength of the interaction will adapt to experience. We will
introduce the fundamental concept of cognitive trust as a measure of the degree to which
one agent influences another. Cognitive trust can be defined as the confidence that one
agent has in the information communicated by another one. It thus refers to the perceived
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validity or credibility of received information given the receiver’s knowledge about the
sender.. Note that this is different from the more common meaning of trust which —apart
from other specific uses in law and business— can be broadly summarized as the
expectation that another agent would perform some action (as part of an exchange, as a
result of one’s relationship with the other, or of the power one has over the other). In the
remainder of the paper, however, we will use the shorthand term trust to refer to cognitive
trust. Communication involves the transmission of information on the same concepts from
one agent’s network to another agent’s network, along connections whose adaptive
weights reflect the perceived trust in the information transmitted. Hence, the group of
agents functions as an adaptive, socially distributed network where information and
knowledge are distributed among and propagated between different individual networks.

To demonstrate that this model is realistic, we will run several simulations that can
accurately reproduce several of the key experimental results obtained by psychologists
studying communication and cognition in groups. Thus, our model is able to directly
integrate the two major approaches towards the study of distributed cognition: social
psychology and multi-agent models. We will further situate our model within the broad
multi-agent landscape by comparing it with related models, and we end with the
implications and limitations of the proposed model and identify areas where further
theoretical developments are needed. Suffice it to say here that at present our model is
purely focused on the processing and exchange of information: Our agents do not try to
reap any goal, reward, or “utility”, like in most game-theoretic simulations of economic
rationality or cooperation. The only “actions” they perform are the transmission and
interpretation of information, based on prior experience. Yet, these simple assumptions
will be shown to accurately explain many of the concrete biases that characterize group
level cognition. But first, we describe the proposed connectionist model in some detail.

A Connectionist Approach to a Collection of Individual Nets

Given the plethora of alternative models that have been applied in the simulation of
collective cognition, one may wonder why a connectionist approach was taken to model
individual agents. There are several characteristics that make connectionist approaches
very attractive (for an introduction, see McLeod, Plunkett & Rolls, 1998). A first key
characteristic is that the connectionist architecture and processing mechanisms are based
on analogies with properties of the human brain. Human thinking is seen as an adaptive
learning mechanism that develops accurate mental representations of the world. Learning
is modeled as a process of on-line adaptation of existing knowledge to novel information
provided by the environment. For instance, in group judgments, the network changes the
weights of the connections between the target group and its attributes so as to better
represent the accumulated history of co-occurrences between the group and its perceived
attributes. In contrast, most traditional models in psychology are incapable of such
learning. In many algebraic models, recently acquired beliefs or attitudes about target
groups or persons are not stored somewhere in memory so that, in principle, they need to
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be reconstructed from their constituent components (i.e., attributes) every time a judgments
is requested or a beliefs is expressed (e.g., Anderson, 1981; Fishbein & Ajzen, 1975).
Similarly, activation spreading or constraint satisfaction models recently proposed in
psychology can only spread activation along associations but provide no mechanism to
update the weights of these associations (Kunda & Thagard, 1996; Read & Miller, 1993;
Shultz & Lepper, 1996; Spellman & Holyoak, 1992; Spellman, Ullman & Holyoak, 1993;
Thagard, 1989). This lack of a learning mechanism in earlier models is a significant
restriction (see also Van Overwalle, 1998).

Second, connectionist models assume that the development of internal
representations and the processing of these representations occur in parallel by simple and
highly interconnected units, contrary to traditional models where the processing is
inherently sequential. The learning algorithms incorporated in connectionist systems do not
need a central executive, which eliminates the requirement of centralized and deliberative
processing of information. This suggests that much of the information processing within
agents is often implicit and automatic. Most often, only the end result of these
preconscious processes enters the individual’s awareness. Likewise, in human
communication, much of the information exchange is outside the agents’ awareness, as
individuals may not only intentionally express their opinions and beliefs verbally, but they
may also unknowingly leak other non-verbal information via the tone of voice, facial
expressions and so on (although we do not study these latter aspects).

Finally, connectionist networks have a degree of neurological plausibility that is
generally absent in previous algebraic approaches to information integration and storage
(e.g., Anderson, 1981; Fishbein & Ajzen, 1975). They provide an insight in lower levels of
human mental processes beyond what is immediately perceptible or intuitively plausible,
although they go not so deep as to describe real neural functioning. Unlike traditional
models, they reveal a number of emergent properties that real human brains also exhibit
such as the lack of a clear separation between memory and processing. Connectionist
models naturally integrate long-term memory (i.e., connection weights) and short-term
memory (i.e., internal activation) with outside information (i.e., external activation). In
addition, based on the principle that activation in a network spreads automatically to
interconnected units and concepts and so influences their processing, connectionist models
exhibit emergent properties such as pattern completion and generalization, which are
potentially useful mechanisms for an account of the confirmation bias of stereotype
information dissemination within and between agents in a group.

An Individual’s Net: The Recurrent Model

An individual agent’s processing capacities are modeled by the recurrent auto-
associator network developed by McClelland and Rumelhart (1985). We apply this
network for two reasons. First, we want to emphasize the theoretical similarities that
underlie the present simulations on multi-agent communication with earlier simulation
work on social cognition mentioned earlier (e.g., Smith & DeCoster, 1998; Van Rooy et
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al., 2003; Van Overwalle & Labiouse, 2004; Van Overwalle & Siebler, 2005). Second, this
model is capable to reproduce a wider range of social cognitive phenomena and is
computationally more powerful than other connectionist models that represent an
individual agent’s mental processing, like feedforward networks (Van Overwalle &
Jordens, 2002; see Read & Montoya, 1999) or constraint satisfaction models (Kunda &
Thagard, 1996; Shultz & Lepper, 1996; for a critique see Van Overwalle, 1998).

A recurrent network can be distinguished from other connectionist models on the
basis of its architecture (how information is represented in the model), the manner in which
information is processed and its learning algorithm (how information is consolidated in the
model). It is important to have some grasp of these properties, because the extension to a
collection of individual networks described shortly is based on very similar principles.

Architecture

The architecture of an auto-associative network is illustrated in Figure 2 for a
talking and a listening agent (the trust weights between agents should be ignored for now
and are discussed later). Its most salient property is that all units are interconnected with all
the other units (unlike, for instance, feedforward networks where connections exist in only
one direction). Thus, all units send out and receive activation. The units in the network
represent a target issue (e.g., objects, persons, or groups such as Jamayans) as well as
various attributes associated with the issue (e.g., behaviors, abilities or traits such a smart
and honest). The connections linking the issue’s object with its attributes represent the
individual’s beliefs and knowledge about the issue. For instance, an individual may believe
that waitresses are talkative, and the strength of this belief is represented by the weight of
the waitress—talkative connection.

Information Processing

In a recurrent network, processing information takes place in two phases. During
the first activation phase, each unit in the network receives activation from external
sources. Because the units are interconnected, this activation is automatically spread
throughout the network in proportion to the weights of the connections to the other units.
This spreading mechanism reflects the idea that encountering a person, a group or any
other object automatically activates its essential characteristics from memory. The
activation coming from the other units is called the internal activation (for each unit, it is
calculated by summing all activations arriving at that unit). Together with the external
activation, this internal activation determines the final pattern of activation of the units
(termed the net activation), which reflects the short-term memory of the network.
Typically, activations and weights have lower and upper bounds of approximately —1 and
+1.

In non-linear versions of the auto-associator used by several researchers (Smith &
DeCoster, 1998; Read & Montoya, 1999), the net activation is determined by a non-linear
combination of external and internal inputs updated during a number of internal updating
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cycles. In the linear version that we use here, the net activation is the sum of the external
and internal activations after one updating cycle through the network. Previous simulations
by Van Overwalle and colleagues (Van Overwalle et al., 2004, 2005; Van Rooy et al.,
2003) revealed that the linear version with a single internal cycle reproduced the observed
data at least as well.

Because we will introduce a similar activation updating algorithm for our extension
later on, we now present the automatic activation updating in more specific mathematical
terms. Every unit 7 in the network receives external activation, termed ext, in proportion to
an excitation parameter £ which reflects how much the activation is excited, or

aj = E * ext. (1)

This activation is spread around in the auto-associative network, so that every unit
i receives internal activation in#; which is the sum of the activation from the other units j
(denoted by a;) in proportion to the weight of their connection to unit , or

inti = (an *aj) (2)
j
for all j # i. The external activation and internal activation are then summed to the net
activation, or

net; = E * (extj + intj). (3)

According to the linear activation algorithm (McClelland & Rumelhart, 1988, p. 167), the
updating of activation at each cycle is governed by the following equation:

Aaj=netj - D * aj, (4a)

where D reflects a memory decay term. In the present simulations, we used the parameter
values D = E =1 as done previously by Van Overwalle and colleagues. Given these
simplifying parameters, the final activation of unit i reduces to the sum of the external and
internal activation, or:

aj = net; = extj + intj (4b)

Memory Storage

After the first activation phase, the recurrent model enters the second learning
phase in which the short-term activations are stored in long-term weight changes of the
connections. Basically, these weight changes are driven by the difference between the
internal activation received from other units in the network and the external activation
received from outside sources. This difference, also called the “error”, is reduced in
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proportion to the learning rate that determines how fast the network changes its weights
and learns. This error reducing mechanism is known as the delta algorithm (McClelland &
Rumelhart, 1988; McLeod, Plunkett & Rolls, 1998).

For instance, if the external activation (e.g., observing a talkative waitress) is
underestimated because a weak waitress—talkative connection (e.g., the belief that
waitresses are not very talkative) generates a weak internal activation, then the
waitress—talkative weight is increased to reduce this discrepancy. Conversely, if the
external activation is overestimated because a strong waitress—talkative connection
generates an internal activation that is too high (e.g., the belief that waitresses do not stop
talking), the weight is decreased. These weight changes allow the network to develop
internal representations that accurately approximate the external environment.

In mathematical terms, the delta algorithm strives to match the internal predictions
of the network int; as closely as possible to the actual state of the external environment
extj, and stores this information in the connection weights. This error reducing process is
formally expressed as (see McClelland & Rumelhart, 1988, p. 166):

Awj_sj = € * (ext; - intj) * aj, (5)

where Awj_s; is the change in the weight of the connection from unitj to i, and € is a
learning rate that determines how fast the network learns. An implication of this learning
algorithm is that when an object and its feature co-occur frequently, then their connection
weight gradually increases to eventually reach an asymptotic value of +1. When this co-
occurrence is not perfect, then the learning algorithm gradually converges to a weight (e.g.,
+.50) that reflects the proportion of supporting and conflicting co-occurrences (e.g. 50%).

Communication between Individual Nets: the TRuST Extension

The standard recurrent model was augmented with a number of features, which
enabled it to realistically reproduce communication between individual agents. This
extension assumes that beliefs about objects and their attributes are represented in broadly
the same manner among different agents. Communication is then basically seen as
transferring the activation on the object and its attributes from talking to listening agents.
This is accomplished by activation spreading between agents in much the same way as
activation spreading within the mind of a single individual, with the restriction that
activation spreading between individuals i1s (a) limited to identical attributes and (b) in
proportion to the trust connection weights linking the attributes between agents. A crucial
aspect of these trust connections is that they reflect how much the information on a given
object or attribute expressed by a talking agent is deemed trustworthy, reliable and valid.
Thus, the connections through which individuals exchange information are not simply
carriers of information, but more crucially, also reflect the degree of trust in this
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information. This is the cornerstone of our extension to a collection of recurrent networks,
and therefore we termed our extended model TRUST.

Because agents can play the role of speaker or listener, the trust connections in the
model go in two directions: Sending connections for talking and receiving connections for
listening (see Figure 2) and each agent has both. Note that different trust weights exist for
every meaningful object or attribute in the network. Thus, we may trust someone’s
knowledge on a psychological topic, but distrust his or her sports expertise. Or we may
trust someone’s ideas on honesty, but disagree that they apply to a particular person or
group, or even doubt that we are talking about the same persons after all. Because
connectionist systems do not make a principled differentiation between units, all units —be
it an individual, social group or their attributes— play the same role in the network. In
developing this extension towards multi-agent information exchange, we were strongly
inspired by a number of communicative principles put forward by philosophers and
psychologists. Specifically, the two trust connections implement to a great deal Grice’s
(1975) communicative maxims of quality and quantity.

Maxim of Quality: Sending Trust Weight

The maxim of quality suggests that in order to communicate efficiently,
communicators generally try to transmit truthful information (“Try to make your
contribution one that is true”, p. 46). In the model, the maxim of quality is implemented on
the side of the receiving agent. Listeners filter information in proportion to how much they
trust that information based on their extant beliefs. This is implemented in sending trust
connections from the talking to the listening agent for each issue (see Figure 2). When trust
concerning a specific issue is maximal (+1), the information expressed by the talking agent
is unfiltered by the listening agent. To the degree that trust is lower, information intake by
the listener is attenuated in proportion to the trust weight. When trust is minimal (0), no
information is processed by the listening agent.

For convenience, we refer to all units involving a communicated issue and its
associated attributes as issue i. The listener / receives information on each issue i from all
other talking agents ¢ in proportion to the trust weights and then sums it. Or, in
mathematical terms, for each issue i:

ext; = (trustg, ;*ay) (6)
t

where ext]; represents the external activation received by the listening agent / on
issue i; trusty;—s|i 1s the trust weight from the talking agent ¢ to the listening agent /; and ay;
denotes the activation generated and expressed by talking agent ¢. By comparing with
Equation 2, it can be seen that this mechanism of trust spreading between agents is a
straightforward copy of activation spreading of standard connectionist models within a
single agent.
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Maxim of Quantity: Receiving Trust Weights

Grice’s (1975) maxim of quantity suggests that communicators transmit only
information that is informative and adds to the audience’s knowledge (“Make your
contribution as informative as is required for the current purpose of the exchange”, p. 45).
Similarly, research on group minority suggests that communicators tend to increase their
interaction with an audience that does not agree with their position. This is implemented in
the model by the receiving trust weights from the listening agents to the talking agent (see
Figure 2). These weights indicate how much the talking agent trusts the listening agent on
a particular issue, and hence control how much the taking agent talks about it. To the
extent that these trust weights are high (above trust starting weights, trust,), knowledge
and agreement on an issue is assumed and the talking agent will reduce expressing these
ideas (attenuation). In contrast, when these weights are low (below trust starting weights,
trust,), the talking agent increases expressing these ideas more strongly (boosting). Since
the talking agent may receive different receiving trust weights from different listening
agents /, we take the maximum' receiving trust weight to talking agent ¢ on issue 7, or
trusty; = max(trustyj«1;) for all agents /. Hence, for each target issue i expressed by talking
agent t:

if trusty << trust, then ayj = atj * (1 + trusty)

else atj = ati * (1 — trusty) (7a)

where ayj 1s the activation expressed by the talking agent ¢ on issue i (limited
between -1 and +1), and << means that the term on the left is at least a small threshold (of
0.05) smaller than the term on the right. In contrast, for all other issues j agent ¢ is talking
about, the reverse change of activation occurs (limited between -1 and +1):

if trusty << trust, then atj=ay * (1 - trusty)

else ayj=ay * (1 + trusty) (7b)

Note that when an agent talks about several issues, then an interaction ensues
between attenuation and boosting. For instance, if listeners agree strongly on two issues i
and j, then issue i tends to boost talking about j while, conversely, issue j tends to attenuate
talking about j (and similarly for talking about 7), resulting in little change in the activation
of i and j overall. However, there will be more talking about further issues &.

Adjustment of Trust Weights

Given that perceived trust plays a crucial role in the transmission of information, it
is important to describe how the trust weights are developed and changed in the model.
This adjustment process is alike for receiving and sending trust weights, because they
depend on the same underlying process within the listening agent. Like the standard delta
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learning algorithm where learning is determined by the error between internal and external
signal within the individual agents, trust depends on the error between external beliefs
(expressed by another talking agent) and the agent’s own internal beliefs. For a given
issue, if the error within the listening agent is below some ftrust tolerance, the trust weight
for that issue is increased towards 1; otherwise, the trust weight is decreased towards 0. In
mathematical terms, the change in trust weight by the listening agent / on issue i expressed
by agent 7, or Atrustj—s|i, s implemented as follows:

if | ext)j — intj | < trust tolerance
then Atrustyi_13 =y * (1 - trustj—1j) * | agj |
else Atrustyj—1i =7 * (0 - trustii—17) * | ati |, (8)

where ext|; represents the external activation received by the listening agent / and inf; the
internal activation generated independently by the listening agent /; and 7 is the rate by
which trust is adjusted and | a¢j | the absolute value of the activation on issue i by the
talking agent ¢. In contrast to Equation 5 of the delta algorithm, here the absolute value of
the error and the talking activation i is taken, because trust is assumed to vary from low (0)
to high (+1) only and hence depends on the absolute error between external and internal
activation (in proportion to the absolute strength of the activation by which the talking
agents express their ideas).

To give an example, imagine that the talking and listening agent agree on the
honesty of the Jamayans and both have a connection of +0.80 between these two units (see
Figure 2). How does the system, and more in particular the listener, recognize the
communication on the attribute Honesty as truthful? For the sake of simplicity, we ignore
attenuation and boosting (Equation 8). When the talker activates the Jamayans unit (with
default activation +1), this activation spreads internally to Honesty in proportion to the
connection weight (+0.80; dotted arrow on the left) and thus becomes +0.80. This
activation is then communicated or transmitted along the trust weight (+0.50; dotted arrow
on bottom) arriving at the listener with an external activation exf]; of +.40 for Honesty.
Now, something similar happens within the listener. When the talker expresses the
Jamayans issue, this activation of +1 is transmitted through the trust weight (+0.50)
arriving at the listener with an activation of +.50, which is then internally spread within the
listener via the connection with Honesty (+.080; dotted arrow on the right) resulting in an
internal activation int]; of +0.40. Thus, the external activation (what the listeners hears)
and the internal activation (what the listener beliefs) on the attribute Honesty are identical
and the talker—listener trust weight involving this attribute will increase. Conversely, as
soon as the external and internal activation begin to differ and this difference exceeds the
trust threshold, the trust weight will begin to decrease.

Summing up, the larger the sending trustij_s|i becomes, the more the listening
agent / will trust the talking agent ¢ on issue i communicated, and the more influential the
talking agent will become (maxim of quality). In addition, the larger the receiving
trustijc1j becomes, the more the talking agent ¢ will restrain the expression of his or her
ideas on this issue (maxim of quantity). A summary of the steps in the simulation of a
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single trial is given in Table 1.

General Methodology of the Simulations

Having spelled out the assumptions and functioning of the TRUST model, we apply
it to a number of classic findings in the literature on persuasion, social influence,
interpersonal communication and group decision. For explanatory purposes, most often,
we replicated a well-known representative experiment that illustrates a particular
phenomenon, although we occasionally also simulated a theoretical prediction. Table 2
lists the topics of the simulations we will report shortly, the relevant empirical study or
prediction that we attempted to replicate, as well as the major underlying processing
principle responsible for reproducing the data. Although not all relevant data in the vast
attitude literature can be addressed in a single paper, we belief that we have included some
of the most relevant phenomena in the current literature. However, before discussing these
simulations in more detail, we first provide an introductory overview of the different
processing phases in the simulations, and we end with the general parameters of the model.

Coding of Learning and Communicating

In all simulations, we assumed that participants brought with them learning
experiences taking place before the experiment. This was simulated by inserting a Prior
Learning Phase, during which we briefly exposed the individual networks to information
associating particular issue object with some attributes. Although these prior learning
phases were kept simple and short for explanatory reasons (involving only 10 trials), it is
evident that real life exposure is more complex, involving direct experiences or
observations of similar situations, or indirect experiences through communication or
observation of others' experiences. However, our intention was to establish connection
weights that are moderate so that later learning still has sufficient impact.

We then simulated specific experiments. This mostly involved a Talking and
Listening Phase during which agents communicated. As we will see shortly, given that the
issue topic was typically imposed externally (by the experimenter), this was designed as
external activation and the internal activation spread automatically from this external input
reflects the participant’s own thoughts on the issue. Talking was then simulated by
spreading these two sources of activation in the talking agent’s units —via the trust
weights— to the corresponding listening agents’ units representing the same concepts (see
Table 1 for the exact order of the computations). The particular conditions and trial orders
of the focused experiments were reproduced as faithfully as possible, although minor
changes were introduced to simplify the presentation (e.g., fewer trials or arguments than
in the actual experiments).
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Measuring Beliefs and Communicated Content

At the end of each simulated experimental condition, test trials were run to assess
the dependent variables of the experiments. The specific testing procedures are explained
in more detail for each simulation. The obtained test activations of the simulation were
then compared with the observed experimental data. We report the correlation coefficient
between simulated and empirical data, and also projected the simulated data onto the
observed data using linear regression (with intercept and a positive slope) to visually
demonstrate the fit of the simulations. The reason is that only the pattern of test activations
is of interest, not the exact values.

General Model Parameters

In spite of the fact that the major experiments to be simulated used very different
stimulus materials, measures and procedures, all parameters of the auto-associator are set
to the same values, unless noted otherwise. As noted earlier, the parameters of the
individual nets were the same as in earlier simulations by Van Overwalle and colleagues
(E = D = number of internal Cycles = 1, and a linear summation of internal and external
activation; see Equation 4). The last parameter implies that activation is propagated to
neighboring units and cycled one time through the system. The other parameters are listed
in Table 3. In order to ensure that there was sufficient variation in the data to conduct
meaningful statistical analyses, all weights were initialized at the specified values plus
additional random noise between -.05 and +0.05.

Persuasion and Social Influence

Once people are in a collective setting, it appears that they are only too ready to
conform to the majority in the group and to abandon their own personal beliefs and
opinions. Although dissenting minorities may possibly also have some impact, the greater
influence of the majority is a remarkably robust and universal phenomenon. Two major
explanations have been put forward to explain the influence of other people in a group:
pressure to conform to the norm and informative influence. This section focuses on this
latter informative explanation of social influence: Group members assess the correctness of
their beliefs by searching for adequate information or persuasive arguments in favor of one
or the other attitude position. Perhaps one of the most surprising upshots of this
informative influence or conversion is group polarization —the phenomenon that after a
group discussion, members of a group on average shift their opinion toward a more
extreme position. The next simulation demonstrates that the number of arguments provided
to listeners is crucially important in changing their beliefs. Additionally, we illustrate that
the TRuUST multi-agent model predicts decreasing group polarization as communication
between group factions declines.
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Simulation 1: Number of Arguments

Key Experiment. To demonstrate that the sheer number of arguments
communicated to other people strongly increases their willingness to adopt the talker’s
point of view, we now turn to an illustrative experiment by Ebbesen and Bowers (1974,
Experiment 3). This experiment demonstrates that shifts in beliefs and opinions are to a
great extent due the greater number of arguments received. Participants listened to a tape-
recording of a group discussion, which contained a range from little (10 %) to many (90
%) arguments in favor of a more risky choice. As can be seen in Figure 3, irrespective of
the arguments heard, the participants shifted their opinion in proportion of the risky
arguments heard in the discussion.

Simulation. Table 4 represents a simplified learning history of this experiment. The
first five cells reflect the network of the talking agent (i.e., the discussion group) while the
next five cells reflect the network of the listener. Each agent has one unit reflecting the
issue object (i.e., topic of discussion) and four units to reflect its attributes (i.e., the features
of the arguments). Each row reflects a trial or act of learning or communicating, and
depending on the specific issues and features present or absent at a trial, the respective
units are turned on (activation level > 0) or turned off (activation level = 0). Because this is
the first simulation, we describe its progress in somewhat more detail:

e The discussion group from which the recording was taken (talking agent) first
learns the features or characteristics involving the discussion topic. This learning
was implemented in the first Prior Learning phase of the simulation (see Table 4).

e Next, each participant listens to the recorded talks by the discussion group (i.e.,
talking agent). As can be seen, talking is implemented during the Talking and
Listening phase by activating the issue object (i.e., topic of discussion) in the
talking agent and then allowing the agent’s network to spread this around and
generate internal activation (i.e., own beliefs). Both sources of activation then
initiate the “talking” about one’s own opinions, that is, they spread to the listening
agent in proportion to the trust weights where it is received (as indicated by a
“?”—denoting little ears— in the cells). The varying number of arguments is
implemented in the simulation by having 1, 3, 5, 7 or 9 Talking and Listening trials,
which corresponds exactly to the number of risky arguments used by Ebbesen and
Bowers (1974). In the simulation, we employed the same set of 4 feature units to
denote that these units represent essential aspects in all arguments (i.e., that the
behavior involves risk), and a repetition of these aspects is what increases the
changes in the listener’s opinion.

e Finally, after the arguments have been listened to, the listener’s opinion is
measured in the Test of Belief phase by activating (or “priming”) the topic in the
listening agent, and allowing the neural network of the listener to generate its
internal activation (i.e., own beliefs). This internal activation is then recorded (as
indicated by “?”) and averaged. These simulated data are then projected onto the
observed data for visual comparison

Results. The "statements" listed in Table 4 were processed by the network for 50



TALKING NETS Model of Communication 15

"participants" with different random orders. In Figure 3, the simulated values (broken
lines) are compared with the attitude shifts (striped bars) observed by Ebbesen and Bowers
(1974). Because the starting weights of the listener are always 0 (and additional random
noise), the simulated data reflect a final attitude as well as an attitude shift. As can be seen,
the simulation fits very well and the correlation between simulated and observed data is
significant, » = .98, p < .01. An ANOVA on the simulated attitude further reveals a
significant main effect of the proportion of arguments heard, F(4, 245) = 4.63, p < .001.
Note that these results do not change appreciably when attenuation and boosting (maxim of
quantity) is turned off in the simulation.

Extensions and Discussion. The simulation demonstrates that some minimal level
of trust is needed to pass information from one agent to another. Trust may have several
determinants, such as familiarity, friendliness and expertise of the source. Another very
powerful determinant of trust is membership of a group. Typically, people trust members
from their own group more than members of another group, as dramatically demonstrated
by Mackie and Cooper (1984). Using the same paradigm as Ebbesen ad Bower (1974),
they found that listeners’ attitudes were strongly altered after hearing arguments from an
ingroup, but were much less affected when the same arguments came from an outgroup or
a collection of unrelated individuals. We successfully simulated this effect by repeating the
previous simulation, with the crucial modification that in the ingroup condition, all starting
talking—listener trust weights were set to +1 (to reflect that the listeners trust the talking
agents completely) and in the outgroup/individual condition, all starting talking—listener
trust weight were set to 0 (to reflect complete lack of trust).

Interlude Simulation: Polarization

The TrRUST model predicts that persuasive communication alone leads to group
polarization because the continuing influence of the majority’s opinions gradually shifts
the minority’s dissident position in majority direction (except, of course, when trust
between group members is very low). This prediction is consistent with a meta-analysis by
Isenberg (1986) demonstrating that persuasive argumentation has stronger effects on
polarization than group pressure or social comparison tendencies to conform to the norm.
This prediction is briefly demonstrated in the next simulation. We simulated 11 agents,
each having 3 units denoting the topic of discussion, as well as a positive and a negative
valence unit denoting the position on the topic (for a similar approach, see Van Overwalle
and Siebler, 2005). By providing more or less learning trials with the positive or negative
valence units turned on, we manipulated the agents’ position on an activation scale ranging
between -1 and +1. We then allow all agents to exchange their ideas with all other agents
(on each discussion round, each agent talked two times to everybody else). Afterwards, the
agents’ attitude is measured by priming the topic and reading off the difference between
the positive and negative valence units.

As can be seen in the left panel of Figure 4, polarization was already obtained after
one discussion round as all agents moved their position in the direction of the majority, and
this pattern was further strengthened the more the participants exchanged their ideas. It is
important to note that in order to obtain these results, the tolerance parameter was set to a
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stricter value of 0.10 instead of 0.50. If tolerance was left at the default value of 0.50, all
agents in the group converged to the middle position (average activation 0). This suggests
that in order to shift the minority to a majority position (in order to obtain polarization),
deviance must be tolerated less. This is probably due to the nature of the task. It seems
plausible that when people talk about important beliefs and values, they are less likely to
change their ideas than when they are informed about an unknown or novel topic on which
they have no a priori opinion like in Simulation 1.

Previous simulation work with cellular automata (see section on Alternative
Models) has suggested that deviant minorities are protected against majority influence by
the spatial distance between the two groups. We extended this idea by considering social
distance as a more crucial and realistic parameter, because people may be less influences
by others not only because they are farther apart in space, but also in social status, role,
group and the like. In line with the dominant effect of persuasion in polarization mentioned
earlier (Isenberg (1986), we simulated social distance by restricting the exchange of
information between the minority and majority groups (a) to half the amount of the
previous simulation or (b) to zero (while keeping the overall communication alike by
increasing the communication within groups). As the middle and right panel of Figure 4
demonstrate, under these circumstances the influence of the majority is strongly reduced
and even totally abolished.

Communication

Communication is a primary means by which people attempt to influence and
convert each other (Kraus & Fussell, 1996, 1991; Ruscher, 1998). Our primary focus is on
research exploring information exchange and how this affects participants’ beliefs and
opinions. These studies go one step further than those from the previous section by
studying actual and spontaneous conversation; and by recoding the content of these
conversations, data is collected on the natural course of information exchange.

Simulation 2: Referencing

Key Experiment. Several studies explored how people use language to identify
abstract or concrete objects. This paradigm is termed referencing (e.g., Kingsbury, 1968;
Krauss & Weinheimer, 1964, 1966; Schober & Clark, 1989; Steels, 1999; Wilkes-Gibbs &
Clark, 1992). Typically, one person is designated as the “director” and is given the task to
describe a number of unfamiliar pictures to a “matcher” who cannot see these pictures and
has to identify them. In order to provide a satisfactory solution to the task, both participants
have to coordinate their actions and linguistic symbols to refer to the pictures and have to
establish a joint perspective during the conversation (Schober & Clark, 1989). This
collaborative process is also termed grounding. The aim of the research is to asses how this
perspective-taking and coordination influences the participants’ messages and the
adequacy of these messages. Figure 5 (top panel) depicts the typical outcome of such
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studies (Kraus & Fussell, 1991). On their first reference to one of the pictures, most
directors use a long description, consisting of pictorial attributes. Next, matchers often ask
clarifying questions or provide confirmations that they understood the directions (e.g.,
Schober & Clark, p. 216). Over the course of successive references, the description is
typically shortened to one or two words. Often the referring expression that the
conversants settle on is not one that by itself would evoke the picture. This is taken as
evidence that people not simply decode and encode messages, but that they collaborate
with each other moment by moment to try to ensure that what is said is also understood.
Schober and Clark (1989) conducted such a referencing experiment, where a “director”
described a number of unfamiliar pictures, and the “matcher” had to identify the intended
one from a collection of pictures. Their experiment is interesting, because unlike previous
studies, they recorded not only the verbal descriptions of the director, but also the reactions
of the matcher (Experiment 1). An analysis of the messages (see Figure 5, bottom panel)
shows that both directors and matchers used progressively less words to describe the
pictures, although directors —because of their explanatory role in the conversation— used
more words than matchers.

Simulation. Table 5 represents a simplified simulation of this experiment. The
architecture and learning history are very similar to the previous simulations as it contains
two agents, each having one unit to refer to the image and four units to describe its
features. For illustrative purposes, we used the features from the Martini example in Figure
5 (top panel). First, the director studied a figure during a Prior Observation phase. Next,
during the Talking and Listening phase, both agents talked and listened to each another in a
randomized sequence, with the sole limitation that the director talked more often than the
matcher. Although this is clearly far from the content of a natural conversation where a
matcher asks for specific clarification and elaboration and the director provides targeted
answers and descriptions, as we will see, these minimal assumptions with respect to the
amount of talking are sufficient to replicate the basic effect. Of most importance here is
that not all features are equally strongly connected with the object. However, rather than
allowing the network to randomly generated stronger and weaker connections for some
features (which would be more natural as the connection strength differs between the
participants), we set the activation values of the two last features to a lower value to make
this assumption explicit. To test the content of the conversation, we simply measured the
average activation during the Talking and Listening phase.

Results. The "statements" listed in Table 5 were processed by the network for 50
"participants" with different random orders. In Figure 5 (bottom panel), the simulated
values (broken lines) are compared with the observed number of words (bars). As can be
seen, the simulated and observed number of words match very well and the correlation
between them is significant, » = .99, p <.001. An ANOVA on the simulated data further
reveals a significant main effect of the number of words for the director, F(5,294) =
111.01, p <.001, as well as for the matcher, F(5,294) = 56.26, p <.001.

Extensions and Discussion. The same simulation approach was applied with
success on related work on referencing (Kingsbury, 1968; Krauss & Weinheimer, 1964,
1966) with the same parameters, except for a lower initial trust weight in Kingsbury
(1968). Schober and Clark (1989) also tested the accuracy of matchers and other people
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who overheard the communication between director and matchers, and we were also able
to replicate these accuracy results.

How does the simulation produce the decreasing pattern of words over time? In the
introduction of the TRUST model, we explained that the maxim of quantity is implemented
by the trust weights from the listening agent to the talking agent. A high talker<listener
weight indicates that the listener is to be trusted, and reduces the expression of topics that
the listener is already familiar with, while the expression of other information is boosted.
Consistent with the maxim of quantity, when attenuation and boosting was turned off in
the present simulation, the pattern of results changed (i.e., the number of words did not
decline completely and started to go up again after some time). However, there is also a
second, more important reason for the reduced number of words.

Although our network cannot make a distinction between, for instance,
descriptions, questions or affirmations, it ensures that only the strongest connections with
feature of the picture are reinforced and are ultimately singled out as “pet” words to
describe the whole picture. The weaker connections die out because repeating the same
information over again “overactivates” the system. Because stronger connections already
sufficiently describe the object, the weaker connections are overshadowed by them and
become obsolete. This property of the delta algorithm is also known as competition or
discounting (see Van Overwalle, 1998; Van Overwalle & Labiouse, 2004; Van Rooy et al.,
2003). In the simulation, this overshadowing by stronger connections is clearly
demonstrated when all the features are given equal and maximum connection strength of
+1 (by providing all an activation of +1) in the Prior Learning Phase. Under this
specification, the simulated pattern differs from the observed data (i.e., it showed a less
robust and smooth decrease in number of words so that, for instance, the number of word
was not always the highest on the first trial).

Thus, whenever people repeat information, our cognitive system make its memory
representations more efficient by making reference only the strongest features, while the
other features are gradually suppressed. For instance, people typically simplify recurring
complexities in the outside environment by transforming them into stereotypical and
schematic representations. This points to a cognitive mechanism of efficiency in memory
as an additional reason for the decreasing number of words, in addition to coordination and
establishment of a joint perspective during the conversation (Schober & Clark, 1989). One
might even argue that joint coordination through simplification in the reference paradigm
1s so easy and natural precisely because it relies on a basic principle of cognitive economy
that our brain uses constantly.

Interlude Simulation: Talking Heads

In his “Talking Heads” experiment, Steels (1999, 2003, 2005, Steels & Belpaeme,
2005) describes an open population of cognitive robotic agents who could detect and
categorize colored patterns on a board and could express random consonances to depict
them. With this naming game about real world scenes in front of the agents, Steels (1999)
wanted to explore how humans created meaningful symbols and developed languages.
Although the present TRUST model obviously does not have the full capacities of Steels’
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robots, it is able to replicate the naming game that the robots also played. Four different
sorts of meaning extraction are potentially problematic in this process: the creation of a
new word, the adoption of a word used by another agent, the use of synonyms by two
agents, and ambiguity when two agents use the same word for referring to different objects
(i.e., homonyms).

To simulate these four types of meaning creation, a talking and listening agent first
learned their respective word for two objects, and then after mutual talking and listening
(to an equal degree), we tested how the listening agent generates the meaning of a word
that

e is new for the listener and was used by the talking agent (e.g., for the listening
agent a new Circle—"xu” connection is created);

e matches the word of the talking agent (for both agents the same Circle—"xu”
connection is used);

e is a synonym for the same object (for the talking agent Circle—"xu” is used and
for listening agent Circle—"fep1”);

e is ambiguous in that the same word is used for different objects (for the talking
agent Circle—"xu” is used and for the listening agent Square—"xu”).

Figure 6 displays how the meanings of the words are created and changed under
these four circumstances. Note that we turned off the criterion of novelty (attenuation and
boosting) so that we could concentrate on the acquisition of meaning rather than the
expression and communication of it. As can be seen, the simulated process for the creation
of a new word and matching an existing word are obvious. The new word gradually
acquires strength and the matched word keeps the high strength it has from the beginning.
For synonyms, the simulation reveals a competition between words. To denote a circle, the
listening agent gradually loses its preference for “fepi” in favor of the word “xu” that is
then used more often (although the synonym “fepi” is still used). For ambiguous words,
the simulation predicts no competition so that the ambiguity is not really solved. Instead,
“xu” tends toward a meaning at a higher categorical level referring to both objects alike
(like the word “geometric figures” refers to circles and squares) although the listening
agent keeps its initial preference for Square—""xu” because it is the more prototypical
member of the category.

Simulation 3: Stereotypes and the Rumor Paradigm

A surprising finding in recent research on stereotyping is that our stereotypic
opinions about others are not only generated by cognitive processes inside people’s head
(see Van Rooy et al. 2003, for a connectionist view), but are further amplified by the mere
communication of these beliefs. Several investigations have demonstrated that information
that is consistent with the receiver’s beliefs is more readily exchanged, while stereotype
disconfirming information tends to die out (Brauer, Judd & Jacquelin, 2001; Klein et al.,
2003; Kashima, 2000; Lyons & Kashima, 2003; Ruscher & Duval, 1998; Schulz-Hardt et
al., 2000; Thompson, Judd & Park, 2000). This process reinforces extant stereotypes even
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further, attesting to the crucial role of social communication such as rumors, gossip and so
on in building impressions about others.

Key Experiment. The maxim of quality suggests that communication is more
effective when the information is considered trustworthy. Hence, we might expect that
people with similar stereotypical background (and thus are mutually experienced as
trustworthy), exchange their stereotypical beliefs more often. In contrast, people with a
different background evaluate each other as less trustworthy. In addition, because they
exchange conflicting information (from their opposing background), their messages tend to
cancel each other out. To illustrate these predictions of the TRUST model, we simulate a
study undertaken by Lyons and Kashima (2003, Experiment 1). This study stands out
because the exchange of information was tightly controlled and recorded for each
participant. Specifically, information was communicated through a serial chain of 4
people. One person begins to read a set of information before reproducing it from memory
to another person. This second person then reads this reproduction before then reporting it
verbally to a third person and so on, much the same way as rumors are spread in a
community. The information in the study involved a story depicting a member of a
fictional group, the “Jamayans”. Before disseminating the story along the chain, general
stereotypes were induced about this group (the background information). In one of the
conditions, all 4 participants in the chain were given the same stereotypes about the
Jamayans that they were smart and honest (actual shared condition). In another condition,
2 participants were given stereotypes about the Jamayans that were opposite to that given
to the other 2 participants, so that each subsequent participant in the chain held opposing
group stereotypes (actual unshared condition). The target story given afterwards always
contained mixed information that both confirmed and disconfirmed the stereotype.

As can be seen in Figure 7 (left panel), when the stereotypes were shared, the
reproduction became more stereotypical further along the communication chain. The story
was almost stripped of stereotype inconsistent (SI) information, whereas most of the
stereotype consistent (SC) information had been retained. In contrast, when the stereotypes
were not shared (right panel), the differences between SC and SI story elements were
minimal.

Simulation. We simulated a learning history that was basically similar to the original
experimental procedures used by Lyons and Kashima (2003, Experiment 1). The architecture
involved 5 agents, each having 5 units consisting of the topic of the information exchange (i.e.,
Jamayans), and two stereotype consistent traits (smart and honest) and two stereotype inconsistent
traits (stupid and dishonest). As can be seen in Table 6, for the actual shared condition, we
provided during the Prior SC Information phase, 10 stereotypical trials indicating that the
Jamayans were smart (by activating the Jamayans and the smart unit) and 10 stereotypical trials
indicating that they were honest (by activating the Jamayans and the honest unit) for each of the
agents. For the actual unshared condition, agents 2 and 4 received contradictory information
indicating that the Jamayans were stupid and dishonest (by activating the stupid and liar units)
during the Prior SI Information phase. Next, during the Story phase, the first agent received
ambiguous information about a member of the Jamayans: 5 SC trials reflecting story elements
indicating that he was smart and 5 SI story elements indicating that he was a liar. This story was
then reproduced by this agent and received by the next agent. That is, the Jamayans unit in agent 1
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was activated and, together with the internal activation (i.e., expression of beliefs) of the other
smart/stupid and honest/liar units in agent 1, was then transmitted to agent 2. After listening, agent
2 expressed his or her opinion about the Jamayans to agent 3, then agent 3 to agent 4, and finally
agent 4 to agent 5 (the participants in the fourth position of the experimental chain were led to
believe that there actually was a fifth participant). After each Talking and Listening phase, we
measured how much the talking agent had expressed or communicated the notion that the
Jamayans were smart, stupid, honest or liar

Results. We ran the "statements" from Table 6 for 50 "participants" in the network
with different random orders. As can be seen in Figure 7, the simulation closely matched
the observed data (» = .93, p < .001). Separate ANOVAs with Sharing (shared vs.
unshared) and Position (1, 2, 3 or 4) as factors, reveal a significant interaction for both the
SC and SI story element, F(3, 392) = 19.29—19.93, p <.001. Separate t-tests show that all
adjacent positions differed reliably; except for SC information in the shared condition. This
suggests that in the shared condition, the amount of SC information transmitted from one
agent to the other was almost completely maintained in contrast to the SI information
which decreased. In the unshared condition, the expression of both types of information
decreased. Note that boosting or attenuation of belief expression (maxim of quantity)
should not play a role here as the agents had no opportunity to hear their communication
partners before telling their own story, and so were unable to test whether they agreed on
the Jamayans’ attributes. To verify this, we ran the simulation with boosting and
attenuation turned off, and found identical results. This strongly suggests that for a rumor
paradigm involving novel interlocutors, the initial trust in a talking agent’s statements
(maxim of quality) was sufficient for creating a stereotype confirmation bias during group
communication.

Extensions. We also successfully simulated related work on stereotyping and
impression formation using the rumor paradigm and free discussions (but without
recording and analysis the conversation itself), such as Thompson, Judd and Park (2000,
Experiments 1 & 2), Brauer, Judd and Jacquelin (2001, Experiment 1), Schultz-Hardt,
Frey, Liithgens & Moscovici (2000, Experiment 1) and Ruscher & Duval (1998,
Experiment 1). Although we had to change our parameters somewhat in some of the
simulations (e.g., changing the initial trust or tolerance levels), overall, this attests to the
wide applicability of our approach.

Simulation 4: Maxim of Quantity and the Expression of Stereotypes

The maxim of quantity suggests that when the audience is knowledgeable and
agrees with the communicator’s position, less information is transmitted. Recall that in the
model, the maxim of quantity (implemented by a strong talker<listener trust weight)
indicates that the listener is to be trusted and that expression of the same issue or attribute
can be attenuated, while the expression of other issue or attribute should be boosted.

Key Experiment. To illustrate the working of the maxim of quantity, we now apply
the TRUST model to another data set from the same empirical study by Lyons and Kashima
(2003) described above. In this study, Lyons and Kashima provided half of their
participants with the false information that the other participants in the chain had received
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completely similar background information on the Jamayans (perceived complete
knowledge), while the other half were given the false information that the other
participants were completely ignorant (perceived complete ignorance). As shown in Figure
8, the results indicated that given the belief of complete knowledge, both SC and SI story
elements were reproduced and no substantial stereotype bias emerged. In contrast, in the
complete ignorance condition, a stereotype bias became apparent in that SI story elements
were strongly suppressed.

Simulation. We ran the same simulation as before, with the following
modifications. In order to obtain high trust weights from the listening agents to the talking
agents, (a) we included only the actual shared condition, and (b) in the perceived complete
knowledge condition, we set the initial trust weights from listening to talking agents 0.20
above the trust starting weight for the units involved in the transmission of SC information
(Jamayans, smart, honest). These high trust weights directly simulate the notion that the
listening agents were to be trusted more than usual because they share the same
background with the speaker.

Results. As can be seen in Figure 8, the simulation matched the observed data
although not above conventional levels of significance (» = .81, p = .19) partially due to
lack of data points (only 4), and partly because of the implementation of the maxim of
quantity. If only boosting on other issues were implemented (without attenuation of
familiar issues) then the simulation would match almost perfectly the observed data.
However, because attenuation of known information is the core idea of the maxim of
quantity (see Grice, 1975), we left this crucial aspect intact. An ANOVA revealed the
predicted significant interaction between perceived Sharing (knowledge vs. ignorance) and
Type of Information (SC versus SI), F(1, 796) = 139.92, p <.001. Further t-tests revealed
that although the difference between SC and SI was still significant under complete
knowledge, #398) = 4.45, p < .001, it was much less so than under complete ignorance,
#(398) = 23.25, p < .001. The implementation of the maxim of quantity was crucial in the
simulation of higher SI information in complete knowledge condition. This strongly
suggests that when people believe they share a similar background, the maxim of quantity
helps to neutralize the stereotype confirmation bias in communication.

Simulation 5: Group Problem-Solving and Sharing Information

It is often believed that a group as a whole has more intellectual resources to help
solve a problem than individuals, because some members may have crucial information
that others do not have and that may lead to a solution. By pooling all such unique
information, the group as a whole should make considerable better decisions. However,
contrary to this ideal of group problem solving, research has revealed that unique
information is discussed less often than shared information, and if it is, it is often brought
in the discussion much later (Stasser, 1999; Stasser and Titus, 1985). This, of course,
reduces the efficiency and speed of group problem solving (Larson, Christensen, Abbott &
Franz, 1996; Larson, Foster-Fishman & Franz, 1998).

This result i1s unexpected. Would one not expect on the basis of Grice’s (1975)
maxim of quantity, that group members discuss known or shared information less in favor



TALKING NETS Model of Communication 23

of novel information? Why, then, are they doing the opposite? One explanation, put
forward by Stasser (1999) is that shared information has a sampling advantage. That is,
because shared information has a higher probability of being mentioned than unique
information (since many members hold shared information), groups tend to discuss more
of their shared than their unshared information. However, each time an item of shared
information is brought forth, because most group members hold this just-mentioned item,
the probability to sample additional shared information is reduced more than unique
information. This sampling explanation predicts more discussion of shared information at
the start of a discussion, while unique information is brought in the discussion later.
Another explanation, based on the idea of grounding, was put forward by Wittenbaum and
Bowman (2004). They argued that group members attempt to validate one’s thoughts and
ideas by assessing their accuracy and appropriateness through comparison with others.
Shared information can be socially validated and hence provides opportunities to evaluate
each other’s task contributions, while unshared information cannot. Therefore, it is
exchanged more often.

The idea that people validate their thoughts and ideas through comparison with
others is also at the core of our approach. Indeed, social validation and trust depend on the
information being consistent with one’s beliefs. As put forward by Stasser (1999), because
of uneven sampling probabilities, shared information is communicated more often at the
beginning of a group discussion. However, after the information has been validated, trust is
high and the maxim of quantity kicks in. This implies that after a while, discussion of
shared information is attenuated while discussion on other issues is boosted, and so
increases the discussion of unique ideas.

Key Experiment. To illustrate the working of the maxim of quantity in group
problem solving, we conduct a simulation of an empirical study by Larson et al. (1996).
Participants in this study watched a short videotaped interview of a patient by a physician
in an examination room. Three different videotapes were created. Roughly half of the
information in each tape was also present in the other tapes (shared condition) while the
remaining information was present in one tape alone (unique condition). Each videotape
was shown to different teams consisting of a mixture of medical students and established
experts. Afterwards, each team discussed the case and produced a differential diagnosis.
This discussion typically lasted less than 20-25 minutes. Figure 9 shows the percentage of
shared as opposed to unique information as the discussion unfolded, where each discussion
position reflects the point in the discussion where a new item was introduced (i.e., omitting
the repetitions). As can be seen, there is a negative linear trend in that initially a lot of
shared items is discussed, while at the end more unique items are mentioned.

Simulation. We simulated a discussion by 3 agents (although only 2 are shown in
Table 7). Each agent had 7 units (although only 5 are shown) consisting of the object of
discussion (i.e., the patient), and 3 shared items and 3 unique items. To simulate the
viewing of the videotape, during the Learning phase, we ran 5 trials for each agent, in
which all the shared items were learned and a single unique item. Next, in the Talking and
Listening phase, we let all agents freely talk about all the shared and unique items. Because
agents knew only about a single (unique) item at the beginning of the discussion, this
actually provides a sampling advantage for the shared information at the start. To avoid an
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a priori sampling advantage in the simulation, we used the minimal assumption that each
agent expressed a single shared and a single unique item during each discussion round.
Given the interplay between attenuation and boosting, this leaves each agent in the
simulation completely free to talk as much as he or she "wants" about the issue. After each
round, we measured how much each agent had communicated the shared and unique items.

Results. We ran the "statements" from Table 7 for 50 "participants" with different
random orders. As can be seen in Figure 9, the simulation closely matched the observed
data (» = .85, p <.001). A one-way ANOVA on the percentage shared information reveals
the predicted main effect of the discussion position, F(34, 2665) = 335.98, p < .001. This
confirms that according to the simulation, as the discussion progresses, more unique
information is transmitted.

Extension. Research by Stewart and Stasser (1995) indicates that when members
are explicitly told about their relative expertise (i.e., their knowledge of their unique
information), then the communication of unique information is facilitated. To simulate this
effect, we set all receiving trust weights to +1 for the unique information on which the
agent was the sole expert, and then ran the simulation again. As can be seen in the figure,
more unique information is communicated under these conditions, consistent with the
empirical findings. Note that providing high trust weights to all information, including
shared information, does not lead to this effect since that gives again a sampling advantage
to shared information.

We also simulated a well-known study by Stasser and Titus (1985) that illustrates
the lack of sharing unique information. This study served as input for the Discuss
computer simulation developed by Stasser (1988) to explore and illustrate his theoretical
ideas about the integration of information in group discussion and decision making. We
did not select this study for the present paper, in part because the data input and simulation
is somewhat more complex and because it did not provide data on actual information
exchange, but only the end result in participants’ beliefs. Nevertheless, a simulation with
our model and the same parameters (except the learning rate which was reduced to .25 for
more robust results) replicated the major significant results and yielded a mean correlation
of r = .79 with observed post-discussion preferences (Stasser and Titus, 1985, Table 5).

Comparisons with Other Models

It is not the first time that computer modeling has been used to aid our
understanding of social relationships and influence and to verify the assumed theoretical
processes underlying these phenomena. Several categories of computer models can be
distinguished: cellular automata, social networks and different types of neural networks
(see also Nowak, Vallacher & Burstein, 1998). We describe each of these approaches and
discuss their shortcoming and strengths, and compare them to the present model.



TALKING NETS Model of Communication 25

Cellular Automata and Social Networks

In cellular automata and social networks, the units of the model represent single
individuals and the connections the relationships between individuals. This type of models
deals less with processes within an individual, but rather between individuals.

Cellular Automata. Cellular automata consist of a number of agents (automata)
arranged in a regular spatial pattern such as a checkerboard. Each automaton possesses a
limited number of attributes (typically 1 or 2) that can be in a limited (often binary)
number of states, such as cooperate or defect, or positive or negative opinion. Typically,
individuals are linked to their neighbors, and the nature of the linkage is changed by an
updating algorithm. Depending on the specific models, these links may represent different
characteristics such as persuasiveness, propensity for cooperation, decision strategies and
so on (Nowak et al., 1998). Cellular automata allow capturing of regularities and patterns
of social norms or opinions in a group while individual agents update their behavior solely
on the basis of local information between neighboring agents. For instance, the pioneering
work by Nowak, Szamrej and Latané (1990) on the social impact model gave rise to
important insights such as the role of geographical clustering in protecting deviant
minority opinions from being overthrown by a vast majority (see also Interlude Simulation
i1). Likewise, Axelrod’s culture model (1997, see also Axelrod, Riolo & Cohen, 2002;
Riolo, Cohen & Axelrod, 2000) showed that a whole population can converge to a local
common culture when agents adopt their attributes on the basis of their similarity with
neighboring agents (producing roughly an effect like trust weights). In more recent work,
Barr (2004) demonstrated convergence to spatially organized symbolic systems (such as a
common language or several dialects) and Couzin, Krause, Franks and Levin (2005)
illustrated that a small proportion of informed individuals can guide a group of naive
individuals towards a goal. Kennedy (1999) proposed a more sophisticated particle swarm
algorithm that implements error-driven learning from an agent’s own experiences or other
neighboring agents, and where agents conform to their neighbors not on the basis of a
single attribute like similarity as in previous models, but when their (learned) performance
is better than their own. Although cellular automata are flexible with respect to the types of
connections they support, they are very rigid with respect to the structure of the social
relationships, in that individuals are only influenced by their close neighbors and less (or
negligible) so when they are farther apart in space. Hence, social relations are strongly
determined by the geometry of the social space, rather than being based on individual
choices (Nowak et al., 1998).

Social Networks. This geometrical limitation is relaxed in social networks, where
social relations between individuals are depicted as connections among units in a graph.
This makes it possible to describe social properties of individual agents (e.g., popularity
versus isolation) as well as properties of the groups of individuals (e.g., clustering of
opinions in cliques). For instance, Janssen and Jager (2001) developed a consumat
approach where agents decide to consume products that have the highest personal
preference or social preference (e.g., have the largest market shares). However, a limitation
of social networks is that the links are often specified in binary positive-negative (or
present-absent) terms and do not allow for graded strength. Perhaps more importantly,
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these models do not provide a general theoretical framework to update the connections in
the network. Rodriguez and Steinbock (2004) recently developed a social network model
that included graded and adjustable trust relationships between individuals, which appear
to better capture the representativeness of decision outcomes. However, given the lack of a
general framework, the proposed solution in this as well as in other social networks is
often idiosyncratic.

Attractor or Constraint Satisfaction Networks

Like cellular automata and social network, the units of attractor or constraint
satisfaction networks represent single individuals and the connections the relationships
between individuals. However, unlike these previous models, the connections have graded
levels of strength and their adjustments are driven by general algorithms of weight
updating. Specifically, the computations for spreading of information and updating
relationships are adopted directly from neural networks. Typically, the architecture is a
recurrent structure (like the present model), so that all individuals have unidirectional
connections with all other individuals.

Many attractor models represent opinion change as the spreading of information or
beliefs across individuals. This social spreading is formalized in a similar manner as the
spreading of activation in neural models. Eventually, after going through multiple cycles,
the model reaches an equilibrium in which the state of the units do not change any more,
that is, the model settles in a stable attractor that satisfies multiple simultaneous constraints
represented by the supporting and conflicting states and connections of the other units.
Hence, an attractor reflects a stable social structure in which balanced social relationships
or attitudes are attained. Nevertheless, attractor networks have a fundamental limitation as
models of social relations. Since they are based on an analogy with the brain, Nowak et al.
(1998) warned that

it is important to remember that neurons are not people and that brains are not
groups or societies. One should thus be mindful of the possible crucial differences
between neural and social networks... [some] differences ... may reflect human
psychology and are difficult to model within existing neural network models (p.
117-118).

Perhaps the most crucial limitation in this respect is that the individuals in the
networks do not have a psychological representation of their environment so that
individual beliefs are reduced to a single state of a single unit. This shortcoming was
overcome by Hutchins (1991). He used constraint satisfaction networks to capture an
individual’s psychology and memory. Thus, an individual’s belief was viewed as the
formation of a coherent interpretation of elements that support or exclude each other, in
line with earlier constraint satisfaction models of social cognition (Kunda & Thagard,
1996; Read & Miller, 1993; Shultz & Lepper, 1996; Spellman & Holyoak, 1992;
Spellman, Ullman & Holyoak, 1993). Crucially, he combined these individual constraint
satisfaction networks into a community of networks so that they could exchange their
individual information with each other. One of the parameters in his simulations is the
persuasiveness of the communication among individuals’ nets, which is related to our trust
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weights although it was only incorporated as a general parameter. A similar approach for
two individual nets was developed by Shoda, LeeTiernan and Mischel (2002) to describe
the emergence of stable personality attractors after a dyadic interaction. However, in this
model, information exchange was accomplished by interlocking the two nets directly (as if
two brains were interconnected without any check or control on the veracity or credibility
of the information coming from another person), which is implausible as a model of human
communication.

Assemblies of Artificial Neural Networks

The constraint satisfaction model of Hutchins (1991) discussed in the previous section was
a first attempt to give individuals their own psychological representation and memory.
However, one major shortcoming is that the connections in the individual constraint
satisfaction networks are not adaptive, that is, they cannot change on the basis of previous
experiences (see also Van Overwalle, 1998). This limitation was addressed by Hutchins
and Hazlehurst (1995) in a model that consists of a collection of recurrent nets. Each
individual was represented by a single recurrent net with adaptive weights (and with
hidden layers), and all the nets could exchange information with each other. The model
illustrated how a common lexicon is created by sharing information between individuals.
However, as we understand it, the output of one individual’s network served as direct input
for another individual’s network as if two brains were directly interlocked with each other,
without moderation of the perceived persuasiveness or validity of the received information.
This limitation was overcome in the present TRUST model. The Clarion model developed
by Sun and Peterson (1999) combines information encoding and learning at the symbolic
level as well as the lower connectionist level, and permits that agents influence each other
at both levels. Possibly, to date, this is the most sophisticated model in this approach, apart
from the robots developed by Steels (1999, 2003; Steels & Belpaeme, 2005) which give
the individual networks a body with primitive perception and movement.

What has been Accomplished? Limitations and Implications

The TRUST model does more justice to the complexity of the human mind in
comparison with earlier multi-agent models, by zooming in on the individual level. This
allowed simulating various aspects of human influence and communication in smaller
groups as uncovered in empirical research. This constitutes important “post”dictions of our
TRUST model. Other simulations also demonstrate that scaling up the TRUST model to larger
group phenomenon such as polarization was successful, and suggests that the trust model
may be applied to societal phenomena at large (although this is beyond the scope of this
article).
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Robustness of the Simulations

To what extent are the TRUST simulations dependent on the specifics of the current
architecture or parameters? Earlier multi-agent simulation work was often limited in the
range of phenomena simulated or used a slightly different model for each. Admittedly, for
some of the extensions and interlude simulations, we occasionally set the parameters to
values other than the default to replicate a particular study or domain of investigation.
Perhaps, this is not surprising given that we explored such different contexts. However, it
is important to establish the robustness for the major simulations 1—5 reported earlier, and
to do this, we ran these simulations again with different parameter ranges and a different
architecture.

First, we performed an exhaustive search of the novel trust parameters (i.e., trust
learning rate, trust tolerance and trust starting weights, see also Table 3) in a range between
0.30 and 0.60 (or £ 0.10 all default trust parameters) and identified the lowest correlation
between simulated and observed data. For all major simulations except one, the lowest
correlation was generally only .02 lower than the correlation with default parameters
reported earlier, and the simulation showed the same substantive pattern as the human data.
The only exception was Simulation 4 on perceived sharedness (Lyons and Kashima, 2003;
lowest » = .60) which sometimes underestimated the proportion of stereotypical utterances
expressed in the shared condition. Although this result may reflect plausible dependencies
on trust parameters that exist also in the real world (such as the degree of knowledge by
others), as far as we know, Lyons and Kashima’s manipulation has not yet been replicated
so that the implications are unclear.

Second, for ease of presentation of the major simulations, up till now we used a
localist representation where each unit represents a single symbolic concept. However, a
more realistic code is a distributed representation where each concept is represented by a
pattern of activation across a set of units that each represents some subsymbolic micro-
feature of the concept (Thorpe, 1994). We reran the major simulations with such a
distributed architecture® and the results showed on average the same correlation with the
human data as the major simulations reported earlier. In sum, then, the major simulation
results hold across a wide range of parameter settings and stimulus distributions.?

Limitations

However, it is also evident that we have charted only the first modest steps in
modeling human collective intelligence through communication. Several aspects have been
left out in order to focus on the most important social aspects of communication in a small
group of individuals.

First, our model leaves unspecified by what linguistic means information is
encoded and decoded during transmission from speaker to listener. However, at least at the
moment, the omission of language as a tool of communication seems a sensible
simplification which already leads to interesting simulation results that replicate existing
research data. Some theorists attempted to develop connectionist models in which
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language is seen as an essential means of human communication that emerges from the
demands of the communication rather than from anything inside the individual agents
(Hutchins & Hazlehurst, 1995; Hazlehurst & Hutchins, 1998; Steels, 1999; Steels &
Belpaeme, 2005).

Second, our model also largely ignores intentional acts by the communicators. To
name a few, it does not incorporate communicative acts such as demands, promises or
other requests, or other strategic decisions to fit the information better to the audience’s
knowledge and background. It also leaves out more subtle strategic maneuvering to please
the audience so as when speakers believe that they can make a better impression by
speaking with praise about a person that is liked by the audience (Echterhoff, Higgins &
Groll, 2005; McCann & Higgins, 1992; McCann, Higgins & Fondacaro, 1991; Schaller &
Conway III, 1999). Because such strategic acts are often made deliberatively, they are
beyond the current connectionist approach.

Third, a question left unanswered is how trust about agents themselves, such as
experts, can be built in the model. Most previous multi-agent systems are incapable of
developing and applying such knowledge about trustworthy agents. Although space
limitations prevented us to elaborate on this in detail, let us briefly note that the present
model can incorporate the meta-notion about an “expert agent” as an additional unit in an
individual network, so that trust on a given topic carries over via internal connections to a
potential expert source. In their single-agent recurrent connectionist model, Van Overwalle
and Siebler (2005) furthermore demonstrated how knowledge about source expertise
influences one’s opinion on an issue.

What to do Next? Novel Hypotheses

Although incorporating earlier theories and data in a single model is an
accomplishment in its own right, theory building is often judged by its ability to inspire
novel and testable predictions. In this section, we focus on a few novel predictions
involving cognitive trust in information, because this is a novel contribution of the TRUST
model that we see as theoretically most crucial in a communicative context. Although there
is increasing awareness that trust is an important "core motive" in human interaction
(Fiske, 2005), there has been little empirical studies on cognitive trust in social cognition,
let alone on its specific role in human communication and information exchange.

What are the determinants and consequences of cognitive trust? Our model
proposes that if no a priori expectations on agents exist, people’s trust of information is
determined by the fit with their own beliefs. Although some degree of divergence is
tolerated, if the discrepancy is too high, the information is not trusted. Thus, rather than
some internal inconsistency or some internal ambiguities in the story told, it is the
inconsistency with one's own beliefs that compels the listener to distrust the information.
With respect to the consequences of cognitive trust, our model predicts that more cognitive
trust results in more and easier adoption of the expressed views and solutions. In contrast,
it takes more time to read and judge untrustworthy messages because as they conflict with
one’s own beliefs, they require scrutiny of multiple interpretations or more elaboration to
be accepted or rejected.
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Is cognitive trust applied automatically, outside of consciousness? Because
acceptance of information on the basis of trust is based on similar processes in the TRUST
model as activation spreading in standard connectionist models, we suggest that this is a
quite automatic process. Likewise, because the change of trust weights in the model is a
straightforward extension of error-driven learning algorithms in connectionist models, we
suggest that cognitive trust is changed automatically. Consequently, we predict that
inferences on cognitive trust are developed spontaneously on the face of information given,
and that social inferences and decisions are made only when the information is
(automatically) seen as trustworthy. There is some initial support for these predictions, as
Schul, Mayo and Burstein (2004) recently found that trusted messages spontaneously elicit
congruent associations while distrust leads to the spontaneous activation of associations
that are incongruent with a suspected message. In contrast, although automatic to some
degree, we expect that other criteria such as novelty and attenuation of talking about
known information can be more easily overruled by controlled processes, such as task
instructions and goals, since the act of speaking itself is largely within the control of the
individual.

An a more societal level, another hypothesis worth further investigation is
suggested by our simulation on the diminished adoption of a majority position when the
communication between minority and majority groups is decreased, leading to more
divergent opinions (see Figure 4). The interesting question now is: What is the exact
amount and type of communication needed for two or more groups to either merge their
opinions or remain separate? This problem has immense potential applications, since it
describes the all too common situation in society where two cultures or subcultures live in
close contact. In some cases the minority is assimilated in the majority (e.g., most initial
European communities in the U.S.), in other cases there is strong and apparently growing
polarization between groups (e.g., Islamic communities in Europe), leading to potentially
violent outbursts. Our model suggests at least two factors that influence the outcome: (a)
the amount of communication outside the community because the more people
communicate outside their group the smaller the probability of divergence between groups;
(b) the degree of initial inconsistency between the opinions in the two communities (e.g.
different beliefs on wearing head scarves by women which is obligatory according to
Islamic extremists and unwanted by a European majority). Further simulations with more
agents, more differentiated beliefs, and a more fine-grained manipulation of the amount of
communication between the groups should throw more light on the precise conditions in
which two cultures will either merge or divide.

Conclusion

The proposed multi-agent TRUST connectionist model combines all elements of a
standard recurrent model of impression formation that incorporates processes of
information uptake, integration and memorization, with additional elements reflecting
communication between individuals. Although one of many possible implementations, our
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model reflects the theoretical notion that information processing within and between
individuals can be characterized by analogous, yet unique processing principles.

One of the unique features of the model is the assumption that acquired cognitive
trust in the information provided by communicators is an essential social and
psychological requirement of communication. This was implemented through the inclusion
of trust weights, which change depending on the consistency of the incoming information
with the receiving agents’ existing beliefs and past experiences. Trust weights lead to a
selective filtering out of less reliable data and selective propagation of novel information,
and so bias information transmission. From this implementation of cognitive trust emerged
Grice’s (1975) maxims of quality and quantity in human communication. In particular, the
maxim of quality was implemented by outgoing trust weights which led to an increased
acceptance of stereotypical ideas when communicators share similar backgrounds, while
the maxim of quantity was simulated by attenuation in the expression of familiar beliefs
(as determined by receiving trust weights) which led to a gradual decreased transmission of
stereotypical utterances. By spanning a diversity of findings, the present simulations
demonstrate the broad applicability and integrative character of our approach. This may
lead to novel insights for well-known social-psychological phenomena and may point to
potential theoretical similarities in less familiar domains. It may help us to understand why
communicating information among the members of a group sometimes makes their
collective cognition and judgments less reliable.

One element that distinguishes the present model from earlier approaches, but that
1s common to most connectionist modeling, is the dynamic nature of our system. It
conceives communication as a coordinated process that transforms the beliefs of the agents
as they communicate. Through these belief changes it has a memory of the social history
of the interacting agents. Thus, communication is at the same time a simple transmission of
information about the internal state of the talking agent, as well as a coordination of
existing opinions and emergence of novel beliefs on which the conversants converge and
so lead to a “common ground”. By combining all those elements in a social-distributed
network of individual networks, the unique contribution of our model is that it extends
distributed processing, which is sometimes seen as a defining characteristic of
connectionism, into the social dimension. This is how social psychology can contribute to
the further development of connectionism as tool of theory construction (cf. Smith, 1996).
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Footnotes

' To control attenuation and boosting on an issue, we applied not only the
maximum, but also tested the average of all receiving trust weights of all listeners on an
issue. The maximum reflects the notion that if at least someone (or a minority) agrees with
the talker, then he or she will not talk about the issue; the average reflects the same if the
majority agrees with the agent. We did not test the minimum, or the notion that a talking
agent would want to reach unanimity from the audience, as this seemed not very plausible.
As the number of listeners in the present simulations was typically limited to only one or a
few, the difference between maximum and average was negligible. However, we are aware
that the desire to convince only a minority or a majority is very much under the strategic
control of the speaker (see also General Discussion), so that it could be entered in the
model as an additional parameter, especially when simulating a larger audience. We did
not do so at present to keep the model conceptually coherent and as simple as possible.

2 Each unit was replaced by a set of 5 units, and their activation was represented by
a pattern drawn from a normal distribution with mean as indicated in the learning histories
(i.e., Tables) and standard deviation 0.10, and this random pattern was redrawn after each
10" simulation run. In addition, to reflect the imperfect conditions of perception and
inference, random noise drawn from a normal distribution with mean 1 and standard
deviation 0.10 was added to these activations (hence, the variation in the starting weights
was dropped). We kept the same parameters as for the localist representation, except that
the standard learning rate was lower (as more units are involved) and the best fitting
learning rate we found was either 0.03 or 0.06.

3 The reader can also assess the robustness of the simulations by exploring other
parameters. The files of the simulations are available upon request, and the program for
running the simulations is available at www.vub.ac.be/PESP/VanOverwalle.htmI#FIT.
Parameters can be changed and explored by choosing the menu Simulation | Parameters.
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Table 1

Summary of the Main Simulation Steps for each trial in the TRUST Model

Cycle though steps A—G for all issues and their attributes (i.e., all units)

Equation in
Text

A. set external activation for each issue object (or attributes) present (within

agents)

B. spread that activation within all non-listening agent

C. attenuate and boost the internal activation of talking agents before
transmitting it
(see “i” in Tables 4 — 7)

D. spread (i.e., transmit) activation from talking agents to listening agents

[13%4]

(from “i1” to “?” respectively in Tables 4 — 7)

E. spread that activation within all listening agents

F. update trust weights (between agents)

G. update connection weights (within agents)

(1)

(2) (4b) if
agent # [
(7a) (7b)
(6)

(2) (4b) if
agent =/
(8

)

Note. “Within” refers to all units within an agent. During learning without communication, only

Steps A, B, E and G are functional.
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Overview of the Simulations

Empirical Evidence /

Topic Theoretical Prediction Major Processing Principle

Persuasion and Social Influence

Number of The more arguments heard, the more opinion  Information transmission leads to changes in

Arguments shift listener’s net @

Polarization More opinion shift after group discussion More information transmission by a majority
Communication and Stereotyping

Referencing Less talking is needed to identify objects Overactivation of talker’s and listener’s net

Word use Acquiring word terms, synonyms and  Information transmission on word meaning and

Stereotypes in
Rumor Paradigm

Perceived
Sharedness

Sharing Unique
Information

ambiguous words

More stereotype consistent information is
transmitted further up a communication
chain

Less talking about issues that the listener
knows and more talking about other issues

Unique information is communicated only
after some time in a free discussion

competition between word meanings 2

Prior stereotypical knowledge of each talker and
novel information combine to generate more
stereotypical thoughts &

Attenuation vs. boosting of information
transmission if receiving trust is high vs. low

Same as Simulation 4

2 The maxim of quantity (attenuation and boosting) did not play a critical role in these simulations.
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Table 3

Principal parameters of the TRUST Model and features or individual and group processing they
represent

Parameters Human Features

Parameters of individuals nets
Learning rate = .30 How fast new information is incorporated in prior knowledge
Starting weights = .00 + .05 Initial weights for new connections

Parameters of communication among individual nets
Trust learning rate = .40 How fast the trust in receiving information changes

Trust tolerance = .50 How much difference between incoming information and own

beliefs is tolerated to be considered as trustworthy

Trust starting weights = .40 + Initial trust for new information

.05

Note. £ .05 denotes a random number between -.05 and +.05 that was added to introduce some
noise in the starting weights.
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Table 4

Persuasive Arguments (Simulation 1)

Talking Agent
Listening Agent
Topic
Featl Feat2
Feat3 Feat4
Topic Featl
Feat2 Feat3
Feat4
Prior Learning of Arguments
#10 1
1 1
1 1

Talking and Listening
#1-3-5-7-9 1
i

—

N N N e
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Test of Beliefs
of Listener
1
9 2
2 9

Note. Schematic version of learning experiences along Ebbesen & Bowers (1974, Experiment 3). Each row
represents a trial (i.e., act) of learning or communicating where cell entries denote external activation and
empty cell denote 0 activation; #=number of times the trial is repeated; i=internal activation generated by the
talking agent after activating the discussion topic; ? = (little ear) external activation received from the talking
agent; in the test phase ? = denotes the activation read off for measuring activation. Trial order was

randomized in each phase and condition.
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Table 5

Referencing (Simulation 2)

Talking Agent
Listening Agent
Picture Martini Glass Legs Each-Side Picture Martini
Glass Legs Each-Side
Prior Observation of Figure by “Director”
#10 1
1 8
Talking and Listening
#12 1
i i
? ?
? ?
#8 9
? ?
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Test of Talking
of “Director” ? ?
? ?
of “Matcher”
? ? ?
?

Note. Schematic version of learning experiences along Schober & Clark (1989, Experiment 1). Each row
represents a trial of learning or communicating where cell entries denote external activation and empty cell
denote 0 activation; #=number of times the trial is repeated; i=internal activation generated by the talking
agent after activating the picture;? = (little ear) external activation received from the talking agent, in the test
phase ? = activation of talking agents during the previous talking phase. Trial order was randomized in each

phase and condition.
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Table 6: Rumor Paradigm (Simulation 3)

Talking Agent
Listening Agent
Jamayans Smart Stupid
Honest Liar
Jamayans Smart Stupid Honest
Liar

Prior SC Information on Jamayans: Per Agent

#10 smart 1 1

#10 honest 1

Prior SI Information on Jamayans: Per Agent

#10 stupid



#10 liar

#5 smart

#5 liar

#5 intelligence

#5 honesty
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Mixed (SC + SI) Story to Agent 1

1 1

Talking and Listening by Agents 1 -2, 2—3, 3—4, and 45

1 i
i

?
2 ?
1

i
1 ?
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Test of Talking by Each Agent

smart
?
stupid
?
honest
?
liar
?

Note. Schematic version of learning experiences along Lyons & Kashima (2003, Experiment 1). Each row
represents a trial of learning or communicating where cell entries denote external activation and empty cell
denote 0 activation; SC=Stereotype Consistent; SI=Stereotype Inconsistent; #=number of times the trial is

repeated; i=internal activation generated by the talking agent after activating the Jamayans;? = (little ear)
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external activation received from the talking agent, in the test phase ? = activation of talking agents during
the previous talking phase. The shared condition is always preceded by the SC Information for each agent,
and the unshared condition is preceded by the SC or SI Information alternatingly for each agent, both
followed by the Mixed Story, and Talking and Listening Phase. Trial order was randomized in each phase

and condition.
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Table 7

Shared vs. Unique Information (Simulation 5)

Talking Agent
Listening Agent
Patient Shared1 Shared2 Unil Uni2 Patient Sharedl Shared2 Unil Uni2
Learning the Medical Case from Video Tape
#5 1
1 1
#5
1
0 1
Talking and Listening

Shared 1

i
? ?
?

?
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Unique 1
i i
?
? ?
?
? ?
1
i i
Test of Talking
?
? ? ?
? ?
? ?

Note. Schematic version of learning experiences along Larson et al. (1996). Each row represents a trial of
learning or communicating where cell entries denote external activation and empty cell denote 0 activation;
Uni=Unique; #=number of times the trial is repeated; i=internal activation generated by the talking agent
after activating the patient;? = (little ear) external activation received from the talking agent, in the test phase
? = activation of talking agents during the previous talking phase. Trial order was randomized in each phase

and condition.
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Figure Captions

Figure 1. A multi-agent network model of interpersonal communication. Each agent
consists of an auto-associative recurrent network, and the communication between
the agents is controlled by trust weights. The straight lines within each network
represent intra-individual connection weights linking all units within an individual
net, while the arrows between the networks represent inter-individual trust weights
(only some of them are shown).

Figure 2. The functional role and adjustment of trust weights in communication between
agents, illustrated when a talking agent expresses his or her opinion on the honesty
(attribute) of the people of the Jamayans (issue object); if the talker’s expressed
activation is close vs. different from the listener’s internal activation on the same
attribute, this may lead to an increase vs. decrease of the trust weight involving that
attribute (see text for more details).

Figure 3. Simulation 1: Attitude Shifts in function of the Number of Arguments heard.
Human data are denoted by bars, simulated values by broken lines. The human data
are from Figure 1 in "Proportion of risky to conservative arguments in a group
discussion and choice shift" by E. B. Ebbesen & R. J. Bowers, 1974, Journal of
Personality and Social Psychology, 29, p. 323. Copyright 1974 by the American
Psychological Association.

Figure 4. Interlude Simulation i: Polarization in function of Progress in the Discussion and
Amount of Communication. Decreasing polarization as the discussion unfolds is
illustrated from left to right panel when communication between majority and
minority groups is equal as within the groups [Left], is reduced to half that amount
[Middle] or is totally cut off [Right] while keeping the overall communication
alike.

Figure 5. Simulation 2: [Top] Referencing. In Krauss, R. M. & Fussell, S. R. (1991).
Constructing shared communicative environments. In L. Resnick, J. Levine, S.
Teasley (Eds.) Perspectives on socially shared cognition, p. 186. Copyright 1991
by the American Psychological Association. [Bottom] Words per Reference by the
Director and Matcher. Human data are denoted by bars, simulated values by broken
lines. The human data are from Figure 2 in “Understanding by addressees and
overhearers” in M. F. Schober & H. H. Clark, 1989, Cognitive Psychology, 21, p.
217. Copyright 1989 by Academic Press.

Figure 6. Interlude Simulation ii: Lexical Acquisition for new, matched, synonymous and
ambiguous words.

Figure 7. Simulation 3: Proportion of Stereotype-Consistent (SC) and Stereotype
Inconsistent (SI) Story Elements in function of the Actual Sharedness. Human data
are denoted by bars, simulated values by broken lines. The human data are from
Figure 2 (averaged across central and peripheral story elements) in “How are
stereotypes maintained through communication? The influence of stereotype
sharedness” by A. Lyons & Y. Kashima, 2003, Journal of Personality and Social
Psychology, 85, p. 995. Copyright 2003 by the American Psychological
Association.

Figure 8. Simulation 4: Proportion of Stereotype-Consistent (SC) and Stereotype
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Inconsistent (SI) Story Elements in function of Perceived Sharedness. Human data
are denoted by bars, simulated values by broken lines. The human data are from
Figure 1 in “How are stereotypes maintained through communication? The
influence of stereotype sharedness” by A. Lyons & Y. Kashima, 2003, Journal of

Personality and Social Psychology, 85, p. 995. Copyright 2003 by the American
Psychological Association.

Figure 9. Simulation 5: Percent Shared Unique Information in function of Discussion
Position. Human data are denoted by bars, simulated values by broken lines. The
human data are from Figure 1 in "Diagnosing groups: Charting the flow of
information in medical decision-making teams” J. R. Larson, Jr., C. Christensen, A.
S. Abbott & T. M. Franz, 1996, Journal of Personality and Social Psychology, 71,
p. 323. Copyright 1996 by the American Psychological Association.
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